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Abstract. A simple way of deriving the electromagnetic boundary conditions in the differential-
form formalism is outlined. The derivation is based on glueing together two independent
electromagnetic source–field systems, each existing in an arbitrary electromagnetic environment.
The combined electromagnetic source–field system contains a surface separating regions of the
two original systems and media. It is shown that, in general, additional sources at the surface are
needed for the new system to satisfy the Maxwell equations. This requirement is seen to create
a set of boundary conditions at the surface. As a by-product, Huygens’ principle can be simply
formulated in differential form formalism.

1. Introduction

The set of equations known today as the Maxwell equations was not originally given by
Maxwell in hisTreatise[1]. In fact, his set of electromagnetic equations consisted of twenty
scalar equations with twenty unknowns involving scalar components of both electromagnetic
fields and potentials. The complexity in expression may have been the reason why there
was only a handful of Maxwell’s contemporaries who could really understand his theory,
which again might have been the reason why it took a quarter of century to find experimental
verification of the theory. Oliver Heaviside was first to express the Maxwell equations in a
more compact vector form, basically that most often taught to physics and engineering students.
Heaviside discarded the potentials and wrote two symmetric curl equations for the electric and
magnetic field vectors, which he called the duplex method [2]. Meanwhile, vector analysis
was developed to the present form by Gibbs [3].

To obtain a still more compact representation, the differential-form notation can be used.
While the formalism, based on the exterior product by Grassmann, had already been introduced
early this century by Elie Cartan, its application to electromagnetic theory has met with
difficulties. Only since the 1970s have there been several attempts to suggest its use in
electromagnetic theory. Inspired by books on applied mathematics [4–6], Deschamps was the
first to write a thorough paper [7] which demonstrated the compactness of using differential
forms in electromagnetic theory, when compared with the Gibbsian vector notation. A few
other papers [8–13] and a book [14] followed on the same subject. So far, the formalism
is still overshadowed by vector calculus in spite of the simple geometrical content of the
differential-form quantities.

One of the reasons why differential-form notation has not been adopted in classroom use is
that all aspects of electromagnetism have not yet been efficiently treated in terms of differential
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forms. In the present study it is shown how the electromagnetic boundary conditions can
be derived very simply through the differential-form formalism. The method applied here
is somewhat similar to that discussed in [11] and also invokes [15]. However, while the
starting point in [11] is a discontinuity in the electromagnetic field, the present approach starts
from combining two distinct field problems. This has the additional advantage that Huygens’
principle can be introduced as a by-product.

2. Maxwell equations

The present text requires some background knowledge on multivector algebra and differential-
form formalism, e.g., according to [4,6,7]. We follow the notation of [7] except that the outer
product is explicitly expressed in terms of the wedge sign∧ and the magnetic sources are not
neglected (magnetic sources are here considered as equivalent sources without expressing any
opinion on the existence of magnetic poles). In four-dimensional differential-form notation,
the Maxwell equations can be expressed in compact form as

d ∧Ψ = γ d ∧Φ = τ . (1)

Here,Ψ andΦ are the electromagnetic field two-forms and they can be expanded as

Ψ = D− H ∧ dt Φ = B + E ∧ dt (2)

whereD andB are the electric and magnetic two-forms, andE andH are the electric and
magnetic one-forms. The electric and magnetic source three-formsγ, τ can be expanded as

γ = %− J ∧ dt τ = %m −M ∧ dt (3)

where% and%m are the electric and magnetic charge density three-forms, andJ andM are the
electric and magnetic current density two-forms.

The operatord of the differential-form formalism corresponds to the∇ operator of vector
analysis anddt corresponds to the unit vector along the time axis. The wedge multiplication
sign∧ corresponds to the cross or dot multiplication of vector analysis, depending on the grade
of the two factors. It is quite easy to transfer the present derivation to the language of Gibbsian
vector analysis.

3. Combining source–field systems

Let us consider two independent electromagnetic systems of sources and their fields
{Φi ,Ψi ,γi , τ i} with i = 1, 2, which exist in respective electromagnetic media 1 and 2 each
filling the whole space. Assuming a non-moving surfaceS, open or closed, separating the
space into two regionsV1 andV2 (see figure 1), let us create a new electromagnetic system
{Φ,Ψ,γ, τ }by taking the part of system 1 inV1 and the part of system 2 inV2 and glueing them
along the surfaceS. This can be done mathematically through two characteristic functions
P1(r ) andP2(r ) satisfyingP1(r ) + P2(r ) = 1 and

P1(r ) = 1 r ∈ V1 P1(r ) = 0 r ∈ V2 (4)

P2(r ) = 0 r ∈ V1 P2(r ) = 1 r ∈ V2. (5)

On the surfaceS we can assumeP1(r ) = P2(r ) = 1/2. The media in spaces 1 and 2 do not
have any restrictions, they may be isotropic, anisotropic, linear or nonlinear. The combination
source–field system is now defined by

Φ(r ) = Φ1(r )P1(r ) + Φ2(r )P2(r ) (6)

Ψ(r ) = Ψ1(r )P1(r ) + Ψ2(r )P2(r ) (7)

γ(r ) = γ1(r )P1(r ) + γ2(r )P2(r ) + γs(r ). (8)

τ (r ) = τ 1(r )P1(r ) + τ 2(r )P2(r ) + τ s(r ). (9)
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Figure 1. SurfaceS separates two electromagnetic source–field
systems 1 and 2. Satisfaction of the Maxwell equations requires
additional surface sources atS.

Here we have added extra source termsγs(r ), τ s(r ) in case they are needed to make the
combination system satisfy the Maxwell equations. Also, we have tacitly assumed that the
original sources 1 and 2 have no delta singularities onS.

Let us now require that the system{Φ,Ψ,γ, τ } satisfies the Maxwell equations (1).
Inserting equations (6)–(9), we have

d ∧Φ(r )− τ = [d ∧Φ1(r )]P1(r ) + [d ∧Φ2(r )]P2(r ) + [dP1(r )] ∧Φ1(r )

+ [dP2(r )] ∧Φ2(r )− τ 1(r )P1(r )− τ 2(r )P2(r )− τ s(r )

= [dP1(r )] ∧Φ1(r ) + [dP2(r )] ∧Φ2(r )− τ s(r ) = 0 (10)

d ∧Ψ(r )− γ = [d ∧Ψ1(r )]P1(r ) + [d ∧Ψ2(r )]P2(r ) + [dP1(r )] ∧Ψ1(r )

+ [dP2(r )] ∧Ψ2(r )− γ1(r )P1(r )− γ2(r )P2(r )− γs(r )

= [dP1(r )] ∧Ψ1(r ) + [dP2(r )] ∧Ψ2(r )− γs(r ) = 0. (11)

Here we have applied conditions (1) for the systems 1 and 2 to cancel four terms in each
equation.

Because the characteristic functions are constant outside the surfaceS, the two one-forms
above, denoted compactly as

n1(r ) = dP1(r ) n2(r ) = dP2(r ) = −n1(r ) (12)

vanish outside the surfaceS. Writing equations (10), (11) as

n1(r ) ∧Φ1(r ) + n2(r ) ∧Φ2(r ) = τ s(r ) (13)

n1(r ) ∧Ψ1(r ) + n2(r ) ∧Ψ2(r ) = γs(r ) (14)

the additional electric and magnetic sourcesγs(r ), τ s(r ) are seen to be required for the
Maxwell equations to be valid for the combined system, unless the left-hand sides vanish. The
additional sources are seen to be surface sources, because the left-hand sides vanish outsideS.
Equations (13) and (14) give the boundary conditions between the fields 1 and 2 at the surfaceS
in symmetric form. This is an aid to memorizing the formula since no preference to the sides
1 and 2 of the surface is made.

One can have a visual picture of the one-formsni (r ) = dPi(r ) by assuming instead of
a sharp surface a layer of finite thickness separatingV1 andV2 by two surfacesS1 andS2,
figure 2. If P1(r ) is a function changing continuously from 0 onS2 to 1 onS1, n1(r ) is a
one-form defined by a set of surfaces ofP1 = constant. A similar picture can be applied to the
one-formn2(r ). WhenS1 andS2 approachS, the resulting one-formsn1(r ) andn2(r ) consist
of infinitely dense sets of constant-Pi surfaces inS, which can be represented mathematically
in terms of a surface-delta function. In the Gibbsian vector formalism one introduces unit
vectors normal to the surface which has the drawback that, at any corner points of the surface
with a discontinuous tangent, the normal direction is not unique. The one-form counterparts
ni (r ) do not have this defect, since they are defined on the surfaceS without any normal
direction.
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Figure 2. SurfaceS between regionsV1 andV2 as expanded
to a layer. The one-formdP1(r ) is a set of surfaces of
constantP1 betweenS1 andS2.

4. Boundary conditions

It was seen that the surface-source three-formsτ s(r ), γs(r ) defined by the left-hand sides of
equations (13) and (14) are required as a kind of glue to match the two electromagnetic systems
together into a combined system. If the original two fields happen to satisfy certain continuity
conditions atS (such that the left-hand sides vanish), the surface sources are unnecessary.
However, equations (13), (14) can also be understood in the converse way. Assuming that there
are given surface sourcesγs(r ), τ s(r ) on a surfaceS, the fields on each side of the surfaceS
must satisfy the conditions (13), (14). If there are no surface sources, i.e.γs(r ) = 0, τ s(r ) = 0,
the fields must satisfy the corresponding continuity equation atS.

The conditions (13) and (14) can be expanded in terms of three-dimensional fields and
sources when substituting expressions of the form (2) and (3) as

n1(r ) ∧ [B1(r ) + E1(r ) ∧ dt ] + n2(r ) ∧ [B2(r ) + E2(r ) ∧ dt ] = %ms(r )−M s(r ) ∧ dt (15)

n1(r ) ∧ [D1(r )− H1(r ) ∧ dt ] + n2(r ) ∧ [D2(r )− H2(r ) ∧ dt ] = %s(r )− Js(r ) ∧ dt. (16)

Separating the terms which contain the one-formdt (contracting with a time-like vector) we
have

n1(r ) ∧ B1(r ) + n2(r ) ∧ B2(r ) = %ms(r ) (17)

n1(r ) ∧ E1(r ) + n2(r ) ∧ E2(r ) = −M s(r ) (18)

n1(r ) ∧ D1(r ) + n2(r ) ∧ D2(r ) = %s(r ) (19)

n1(r ) ∧ H1(r ) + n2(r ) ∧ H2(r ) = Js(r ). (20)

In Gibbsian vector notation, these four conditions correspond to the classical interface
conditions for vector fields and scalar or vector surface sources.n1, n2 now denote vectors
normal to the surfaceS pointing towards media 1 and 2, respectively:

n1(r ) · B1(r ) + n2(r ) · B2(r ) = %ms(r ) (21)

n1(r )× E1(r ) + n2(r )× E2(r ) = −M s(r ) (22)

n1(r ) · D1(r ) + n2(r ) · D2(r ) = %s(r ) (23)

n1(r )× H1(r ) + n2(r )× H2(r ) = Js(r ). (24)

The symmetric form of expressing the boundary conditions is effective for memorizing the
formulae.
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From equations (13), (14) and (17)–(20) it is clear that the sources defined by the left-hand
sides are surface sources since the one-formsn1(r ) andn2(r ) = −n1(r ) vanish outsideS. Let
us study their nature by an example. Taking equation (19), the charge three-form is defined by

%s(r ) = n1(r ) ∧ D1(r ) D1(r ) = D1(r )− D2(r ). (25)

The two-formD1(r )fills all space andn1 = dP1(r )picks its value at the surfaceS. Considering
a pointr onS, the one-formn1(r ) defines a local tangent plane, say thexy plane. Hence, it is
a multiple of the one-formdz and satisfiesdz∧n1 = 0 at the pointr . Expanding the two-form
D1 at r as

D1 = Dxdy ∧ dz +Dydz ∧ dx +Dzdx ∧ dy (26)

the charge three-form at the pointr becomes

%s = n1 ∧ D1 = Dzn1 ∧ dx ∧ dy. (27)

Thus, the magnitude of%s(r ) is theDz component of the difference two-formD1 = D1−D2
which multiplies the surface-delta function ofn1. Obviously, the other source components can
be interpreted in a similar way.

As a special case we may consider the problem when the fields and sources are identically
zero inV2. In this case, the conditions (13)–(14) become

n1(r ) ∧Φ1(r ) = τ s(r ) (28)

n1(r ) ∧Ψ1(r ) = γs(r ) (29)

or, in terms of three-dimensional quantities,

n1(r ) ∧ B1(r ) = %ms(r ) (30)

n1(r ) ∧ E1(r ) = −M s(r ) (31)

n1(r ) ∧ D1(r ) = %s(r ) (32)

n1(r ) ∧ H1(r ) = Js(r ). (33)

This means that if we want to terminate an electromagnetic field at a surfaceS, the sources
above must be placed onS to cancel the fields penetrating intoV2.

When medium 2 is perfectly conducting, there are no magnetic charges and magnetic
currents. In this case, the conditions (30), (31) become simpler:

n1(r ) ∧ B1(r ) = 0 (34)

n1(r ) ∧ E1(r ) = 0. (35)

5. Huygens’ principle

The boundary condition formulae can also be used for deriving Huygens’ principle. Assume
that the source–field systems 1 and 2 are the same and the sources are all in the regionV1. In
this case, the sources defined by equations (28), (29) create a field inV2 which cancels that
from the original sources 1, figure 3. Thus, the surface sources (28), (29) with minus signs
added give exactly the same fields in the regionV2 as the sources 1. Because the original
sources can be replaced by the surface sources

τH(r ) = −n1(r ) ∧Φ1(r ) (36)

γH(r ) = −n1(r ) ∧Ψ1(r ) (37)

these can be identified with the Huygens sources [15, 16], i.e. surface sources equivalent to
sources behind the surface.
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Figure 3. Huygens’ principle replaces sourcesγ1, τ 1 in regionV1 by equivalent
sourcesγH, τH on surfaceS. Both will produce the same field in regionV2.

To check this result, let us consider the field radiated by the difference of the original
sources and the Huygens sources to see if this vanishes inV2. Such a field satisfies the
equations

d ∧Φo(r ) = τ 1(r )− τH(r ) = τ 1(r ) + n1(r ) ∧Φ1(r ) (38)

d ∧Ψo(r ) = γ1(r )− γH(r ) = γ1(r ) + n1(r ) ∧Ψ(r ). (39)

Replacing the original sources by

τ 1(r ) = d ∧Φ1(r ) = P1(r )d ∧Φ1(r ) (40)

γ1(r ) = d ∧Ψ1(r ) = P1(r )d ∧Ψ1(r ) (41)

where theP1(r ) functions can be inserted because the sources vanish inV2, equations (38) and
(39) can be expressed as

d ∧Φo(r ) = P1(r )d ∧Φ1(r ) + n1(r ) ∧Φ1(r ) = d ∧ [P1(r )Φ1(r )] (42)

d ∧Ψo(r ) = P1(r )d ∧Ψ1(r ) + n1(r ) ∧Ψ1(r ) = d ∧ [P1(r )Ψ1(r )]. (43)

If we write these as

d ∧ [Φo(r )− P1(r )Φ1(r )] = 0 (44)

d ∧ [Ψo(r )− P1(r )Ψ1(r )] = 0 (45)

and assume uniqueness of solution for the fields, we can argue that the terms in square brackets
must vanish because they have no sources on the right-hand side. This means that the original
sources minus the Huygens sources create fields which vanish inV2 because they involve the
functionP1(r ). The uniqueness of fields radiated by electromagnetic sources requires certain
radiation conditions at infinity. They depend on the specific nature of the electromagnetic
medium and will not be discussed further.

6. Conclusion

Boundary conditions for electromagnetic fields have been derived using the differential-form
formalism in a simple way suitable for presentation to physics or engineering students taking
a course on electromagnetism in a less conventional formalism. Transforming the method to
the language of Gibbsian vector algebra, the same can be also given to the audience of a more
conventional electromagnetics course. Huygens’s principle is obtained through the same line
of thought without reference to Green functions.
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